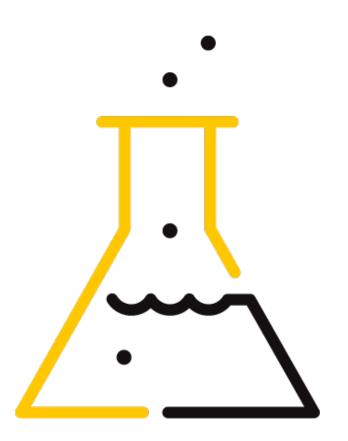


ALLFASTENERS TEST REPORT

SCOPE OF WORK Standard Method Version 1.2 for CDPH 01350 on AF607 Duct Sealant


REPORT NUMBER 105234380GRR-001b

ISSUE DATE 03-November-2022

PAGES

12

DOCUMENT CONTROL NUMBER Per GFT-OP-10 (6-March-2017) © 2022 INTERTEK

Total Quality. Assured.

TEST REPORT FOR ALLFASTENERS USA LLC

Report No.: 105234380GRR-001b Date: 03-November-2022 P.O.: N/A

SECTION 1

CLIENT INFORMATION

Attention:Vern MacGregorAllfasteners USA LLC959 Lake RoadMedina, OH 44256 USAPhone:+1 (440) 232-6060Email:vern.macgregor@allfasteners.com

4700 Broadmoor Ave SE, Suite 200 Kentwood, MI 49512

 Telephone:
 +1 616 656 7401

 Facsimile:
 +1 616 656 2022

 www.intertek.com

Taylor Gebben Project Engineer

Amanda Tongen Project Reviewer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. Date: 03-November-2022

Report No.: 105234380GRR-001b P.O.: N/A

SECTION 2

SUMMARY AND CONCLUSION

Test Method:	Standard Method Version 1.2 for CDPH 01350
Modeling Scenario:	Private office (PO), school classroom (SC)

DESCRIPTION OF SAMPLES

Manufacturer / Location	Monongahela, PA USA
Product Name	AF607 Duct Sealant
Product Number	12DS10
Date of Manufacture	09-June-2020
Date of Collection	09-June-2020
Date of Shipment	16-June-2020
Date Received by Lab	18-June-2020
Date of Test Start	25-June-2020
As Received Sample Condition	Good
Lab Sample ID	GRR2006180003

WORK REQUESTED/APPLICABLE DOCUMENTS

VOC Emissions Analysis:	CDPH Standard Method v1.2
Intertek Quote:	Qu-01296275-4

TEST RESULTS

MODELING SCENARIO	RESULT (PASS/FAIL)	TVOC (mg m ⁻³)
Private Office (PO)	PASS	< 0.01
School Classroom (SC)	PASS	< 0.01

SAMPLE DISPOSITION

At the completion of testing, samples were returned to the client.

Date: 03-November-2022

Report No.: 105234380GRR-001b P.O.: N/A

SECTION 3

CDPH STANDARD METHOD V1.2

Date Received:	18-June-2020
Dates Tested:	25-June-2020 to 09-July-2020

DESCRIPTION OF SAMPLES:

Part Description:	Water based HVAC duct sealant
Material Submitted:	One (1) quart can

ACCEPTANCE CRITERIA:

Referencing:	CDPH Standard Method v1.2, Table 4.1
	LEED v4 - Low Emitting Materials
LEED v4 - TVOC Ranges:	≤ 0.5 mg m ⁻³
	0.5 to 5.0 mg m ⁻³
	≥ 5.0 mg m ⁻³

TEST NOTES OR DEVIATIONS:

The chamber blank for acetaldehyde was above 2.0 μ g/m³, and the chamber blank for TVOC was above 25 μ g/m³. There is not expected to be an effect on testing.

TEST SUMMARY:

The emissions testing was performed according to "Standard Method for the Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers Version 1.2". A photograph of the tested sample is included herein. The sample was applied to a stainless steel plate and placed into the test chamber with top surface exposed. Air samples were collected prior to the sample being placed in the test chamber (0 hours) and at 264, 288, and 336 hours after being placed in the test chamber (0 hours) and at 264, 288, and 336 hours after being placed in the test chamber. Samples analyzed for individual VOCs and TVOC were collected on multi-sorbent tubes containing glass wool, Tenax TA 35/60 and Carbograph 5 TD 40/60. These VOC samples were analyzed by thermal desorption-gas chromatography/mass-spectrometry, TD-GC/MS. TVOC was calculated through integration of the chromatogram from n-pentane through n-heptadecane using toluene as a surrogate. Individual VOCs were calculated using calibration curves based on pure standards unless otherwise noted. Samples analyzed for low molecular weight aldehydes were collected on cartridges treated with 2,4-di-nitrophenylhydrazine (DNPH). Low molecular weight aldehydes were analyzed using high performance liquid chromatography, HPLC.

RESULTS:

Table 1: Sample and Chamber Conditions during Test Period

PARA	METER	SYMBOL	VALUE	UNITS
Cample	Length	-	0.075	m
Sample Dimensions	Width	-	0.076	m
Dimensions	Thickness	-	-	m
Applied sample i	mass	-	17.6	g
Exposed Sample	Surface Area	А	0.006	m ²
Chamber Volum	e	V	0.116	m ³
Chamber Loadin	g Factor	L	0.05	m ² m ⁻³
Inlet Air Flow Ra	te	Q	0.116	m ³ h ⁻¹
Air Change Rate		N _{ACH}	1.00	h ⁻¹
Area Specific Flo	w Rate	$q_{\scriptscriptstyle A}$	20.3	m h ^{−1}
Chamber Pressu	re (Range)	Р	18.7 (12.1-20.9)	Ра
Average Temper	ature (Range)	Т	23.5 (22.9-24.1)	°C
Average Humidit	ty (Range)	RH	49.6 (44.8-53.7)	% RH
Testing Duration		t	336	h

Table 2: Test chamber background VOC concentrations in $\mu g m^{-3}$.

COMPOUND	CAS No.	Cio
Formaldehyde	50-00-0	0.7
ТVОС	-	37.1

Table 3: Test chamber TVOC and formaldehyde concentrations in $\mu g m^{-3}$.

COMPOUND	CAS No.	264 H	288 H	336 H
Formaldehyde	50-00-0	2.9	3.1	2.4
туос	-	97.9	104	94.4

Table 4: Test chamber TVOC and formaldehyde emission factors in $\mu g m^{-2} h^{-1}$.

COMPOUND	CAS No.	264 H	288 H	336 H
Formaldehyde	50-00-0	45.8	50.0	34.3
ТVОС	-	1240	1360	1170

Individual emitted VOCs identified above the lower limits of quantitation are listed in Table 5; VOCs which are listed on chemical of concern lists or have CRELs are indicated.

The measured chamber concentrations and corresponding emission factors of identified individual VOCs and TVOCs are listed in Table 6.

In Tables 4, 6 and 7, emission factors were calculated using equation 3.1 in CDPH Standard Method V1.2:

$$EF_{Ai} = \frac{Q \times (C_{it} - C_{i0})}{A_C}$$

The inlet flow rate, Q (m³ h⁻¹), is the measured flow rate of air into the chamber. The chamber concentration, C_{it} (µg m⁻³), is the concentration of a target VOC_i, formaldehyde and other carbonyl compounds measured at time t. The chamber background concentration, C_{i0} (µg m⁻³), is the corresponding concentration measured with the chamber operating without a test specimen. The exposed surface area of the test specimen in the chamber, A_C (m²), is determined from the measurements made at the time of specimen preparation.

voc	CAS No.	SURROGATE ¹	CREL ² (µg m ^{−3})	CARB TAC ³	PROP 65 LIST ⁴
Formaldehyde	50-00-0	No	9	Yes	Yes
Acetaldehyde	75-07-0	No	140	Yes	Yes
Styrene	100-42-5	No	900	Yes	Yes
Propylene Glycol	57-55-6	Yes	N/A	No	No
1,1'-Biphenyl, 4-methyl-	644-08-6	Yes	N/A	No	No

 Table 5: VOCs detected above lower limits of quantitation in air samples at 336 hours.

¹Indicates which non-listed VOCs were quantified using surrogate compounds, all other compounds were quantified using pure compounds.

²Chronic Reference Exposure Level (CREL) as defined by California Office of Environmental Health Hazard Assessment.

³Substance is listed on California Air Resource Board's (CARB) Toxic Air Contaminate (TAC) identification list.

⁴Substance known to the state of California to cause cancer or reproductive toxicity according to California's Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65).

Table 6: Measured chamber concentrations and corresponding emission factors of individual VOCs
listed in Table 4-1 of CDPH 01350 V1.2. at 336 hours.

VOC	CAS No.	CHAMBER CONCENTRATION	EMISSION FACTOR			
		(µg m ⁻³)	(µg m ⁻² h ⁻¹)			
Formaldehyde	50-00-0	2.4	34.3			
Acetaldehyde	75-07-0	5.4	58.7			
Vinyl acetate	108-05-4	< 0.7	< 15.2			
Epichlorohydrin	106-89-8	< 0.3	< 5.5			
Ethanol, 2-methoxy-, acetate	110-49-6	< 0.4	< 7.7			
Isopropyl Alcohol	67-63-0	< 0.4	< 8.7			
Ethene, 1,1-dichloro-	75-35-4	< 6.4	< 130			
Methylene chloride	75-09-2	< 0.6	< 12.6			
Carbon disulfide	75-15-0	< 0.8	< 15.9			
Methyl tert-butyl ether	1634-04-4	< 1.7	< 35.1			
n-Hexane	110-54-3	< 0.3	< 5.1			
Trichloromethane (Chloroform)	67-66-3	< 0.3	< 5.1			
Ethanol, 2-methoxy-	109-86-4	< 0.4	< 7.3			
Ethane, 1,1,1-trichloro-	71-55-6	< 0.6	< 11.5			
Benzene	71-43-2	< 0.3	< 5.1			
Carbon Tetrachloride	56-23-5	< 0.4	< 8.7			
2-Propanol, 1-methoxy-	107-98-2	< 0.3	< 5.9			
Ethylene glycol	107-21-1	< 6.4	< 130			
Trichloroethylene	79-01-6	< 0.3	< 5.1			
1,4-Dioxane	123-91-1	< 0.3	< 5.1			
Ethanol, 2-ethoxy-	110-80-5	< 0.4	< 8			
Toluene	108-88-3	< 0.5	< 9.9			
Formamide, N,N-dimethyl-	68-12-2	< 0.3	< 6.0			
Tetrachloroethylene	127-18-4	< 0.3	< 5.1			
Benzene, chloro-	108-90-7	< 0.3	< 5.9			
Ethylbenzene	100-41-4	< 0.4	< 7.8			
	108-38-3,					
Xylene (-m, -p, & -o)	95-47-6 <i>,</i>	< 1.2	< 24.1			
	106-42-3					
Styrene	100-42-5	1.4	27.9			
2-Ethoxyethyl acetate	111-15-9	< 0.3	< 5.2			
Phenol	108-95-2	< 0.3	< 6.9			
Benzene, 1,4-dichloro-	106-46-7	< 0.3	< 6.2			
Isophorone	78-59-1	< 0.3	< 5.1			
Naphthalene	91-20-3	< 0.3	< 5.2			

Table 7: Measured chamber concentrations and corresponding emission factors of identified
individual VOCs and TVOC at 336 hours.

voc	CAS No.	CHAMBER CONCENTRATION (µg m ⁻³)	EMISSION FACTOR (μg m ⁻² h ⁻¹)
Propylene Glycol	57-55-6	62.7	1270
1,1'-Biphenyl, 4-methyl-	644-08-6	2.3	45.9
TVOC	-	94.4	1170

Exposure Scenario Modeling and Evaluation:

Estimated building concentrations for the listed scenarios were calculated using equation 3.2a of CDPH Standard Method V1.2:

$$C_{Bi} = \frac{EF_{Ai} \times A_B}{Q_B}$$

The area specific emission rate EF_A at 336 hours (14 days) total exposure time is multiplied by the ratio of the exposed surface area of the installed material in the building, A_B (m²), to the flow rate of outside ventilation air, Q_B (m³ h⁻¹).

The modeling parameters used for the given scenarios are listed in Table 8. The modeled concentrations of identified individual VOCs are listed in Tables 9 & 10. Whether the modeled concentrations meet the maximum allowable concentration requirements specified in Table 4.1 of CDPH Standard Method V1.2 are also indicated.

Table 8: Standard modeling parameters for HVAC duct sealant.

PARAMETER	SYMBOL	VALUE	UNITS
Exposed Surface Area Installed in Private Office (PO)	A _B	0.34	m²
Air flow rate of Private Office (PO)	Q_B	20.7	m ³ h ⁻¹
Exposed Surface Area Installed in Classroom (SC)	A _B	0.91	m²
Air flow rate of Classroom (SC)	Q_B	191	m ³ h ⁻¹

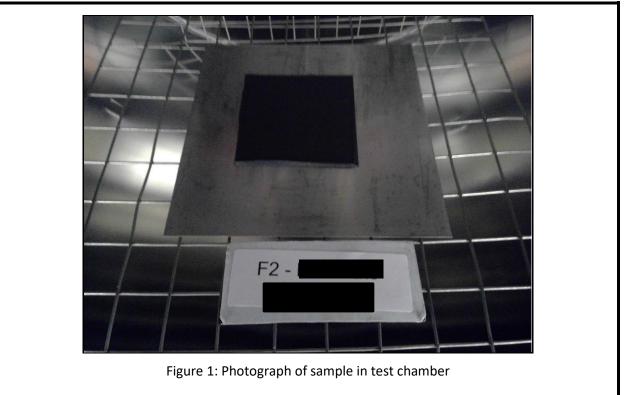

voc	CAS NO.	MODELED CONCENTRATION (µg m ⁻³)		CONC. LIMIT	RESULT Pass (P) /Fail (F)	
		РО	SC	(µg m⁻³)	РО	SC
Formaldehyde	50-00-0	0.6	0.2	9	Р	Р
Acetaldehyde	75-07-0	1.0	0.3	70	Р	Р
Vinyl acetate	108-05-4	< 0.2	< 0.1	100	Р	Р
Epichlorohydrin	106-89-8	< 0.1	< 0.1	1.5	Р	Р
Ethanol, 2-methoxy-, acetate	110-49-6	< 0.1	< 0.1	45	Р	Р
Isopropyl Alcohol	67-63-0	< 0.1	< 0.1	3,500	Р	Р
Ethene, 1,1-dichloro-	75-35-4	< 2.1	< 0.6	35	Р	Р
Methylene chloride	75-09-2	< 0.2	< 0.1	200	Р	Р
Carbon disulfide	75-15-0	< 0.3	< 0.1	400	Р	Р
Methyl tert-butyl ether	1634-04-4	< 0.6	< 0.2	4,000	Р	Р
n-Hexane	110-54-3	< 0.1	< 0.1	3,500	Р	Р
Trichloromethane (Chloroform)	67-66-3	< 0.1	< 0.1	150	Р	Р
Ethanol, 2-methoxy-	109-86-4	< 0.1	< 0.1	30	Р	Р
Ethane, 1,1,1-trichloro-	71-55-6	< 0.2	< 0.1	500	Р	Р
Benzene	71-43-2	< 0.1	< 0.1	1.5	Р	Р
Carbon Tetrachloride	56-23-5	< 0.1	< 0.1	20	Р	Р
2-Propanol, 1-methoxy-	107-98-2	< 0.1	< 0.1	3,500	Р	Р
Ethylene glycol	107-21-1	< 2.1	< 0.6	200	Р	Р
Trichloroethylene	79-01-6	< 0.1	< 0.1	300	Р	Р
1,4-Dioxane	123-91-1	< 0.1	< 0.1	1,500	Р	Р
Ethanol, 2-ethoxy-	110-80-5	< 0.1	< 0.1	35	Р	Р
Toluene	108-88-3	< 0.2	< 0.1	150	Р	Р
Formamide, N,N- dimethyl-	68-12-2	< 0.1	< 0.1	40	Р	Р
Tetrachloroethylene	127-18-4	< 0.1	< 0.1	17.5	Р	Р
Benzene, chloro-	108-90-7	< 0.1	< 0.1	500	Р	Р
Ethylbenzene	100-41-4	< 0.1	< 0.1	1,000	Р	Р
Xylene (-m, -p, & -o)	108-38-3, 95-47-6, 106-42-3	< 0.4	< 0.1	350	Р	Р
Styrene	100-42-5	0.5	0.1	450	Р	Р
2-Ethoxyethyl acetate	111-15-9	< 0.1	< 0.1	150	Р	Р
Phenol	108-95-2	< 0.1	< 0.1	100	Р	Р
Benzene, 1,4-dichloro-	106-46-7	< 0.1	< 0.1	400	Р	Р
Isophorone	78-59-1	< 0.1	< 0.1	1,000	Р	Р
Naphthalene	91-20-3	< 0.1	< 0.1	4.5	Р	Р

Table 9: Modeled concentrations of individual VOCs specified in Table 4-1 of CDPH 01350 V1.2.

Table 10: Modeled concentrations of identified non-listed individual VOCs.

voc	CAS NO.	MODELED CONCENTRATION (μg m ⁻³)		CONC. LIMIT	RESULT Pass (P) /Fail (F)	
		РО	SC	(µg m⁻³)	РО	SC
Propylene Glycol	57-55-6	20.9	6.1	-	-	-
1,1'-Biphenyl, 4-methyl-	644-08-6	0.8	0.2	-	-	-
TVOC _{Toluene}	-	19.1	5.6	-	-	-

PHOTOGRAPHS:

SECTION 4

FACILITIES AND EQUIPMENT: GCMS

	Markes TD-100 Thermal
INSTRUMENTATION USED:	Desorption
INSTRUMENTATION USED.	Agilent 7890A GC
	Agilent 5975C MS
COLUMN USED:	Agilent HP-Ultra 2 (GC)
HPLC	
INSTRUMENTATION USED:	Agilent 1260 Infinity Series
COLUMN USED:	Poroshell 120 EC-C18
HPLC INSTRUMENTATION USED:	Agilent HP-Ultra 2 (GC) Agilent 1260 Infinity Series

SECTION 5

CHAIN OF CUSTODY

intertek sustainability Customer I	Ship Toi Attn: VOC Laboratory 4700 Broadmoor Ave SE Suite 200 Kentwood, MI 49512 Phone: 616-656-7401	Chain of Custody for Che Intertek Quotation Number: Purchase Order (enter Company and Shipping Deta Packed & Shipped By: Shipping Date: Carrier/Airbill Number:	l Number):
Street Addres City/State/Postal code: //onon Country: USA Contact Name & Title (for reporting Contact Phone/Fax Numbers: *		3 Requested Test Test to be performed: CiつPh (Customer Request for C Clean Air Silver™ Certification:	ertification
Contact E-mail Address: Financially Responsible Co.		Clean Air Gold * Certification:	C YES
Company: City/State/Country: Contact Name/Title: Phone Number/E-mail Address:	mation (If Different)	Special Customer Inst	
Sample Product Commercial Name* Product Commercial Part No.(if not Manufacturer Sample Tracking ID:	Details part of the name)*:	Customer Authorizes Laborator of Test Reports Contact: Email Address:	and the second
Date Manufactured*: 6/9/20 Product Category & Use*: Wester Sample Construction Materials*: HVAC_cluct	Jared Sealart, building	Organization:	
Plant Name & Location*: Collection Location within Plant: Date & Time Collected* : 6/9/∂ Number of Sample Pieces*: 4 Sample Collected by*: Phone/Fax Numbers*: E-mail Address*:	Mononsailela,		
	Sample -		
Relinquished By:	d Name* Signature	* Date*	Company*
Received by: Taylor C	Sebben	7/17/2020	Intertek