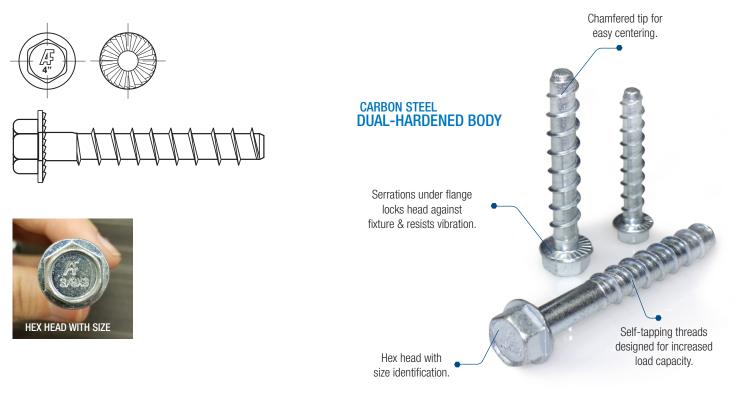
CONCRETE SCREW ANCHORS ZINC, GALVANIZED & STAINLESS STEEL

Concrete Screw Anchors are a totally removable, medium duty, rotation setting, thread forming anchor, ideal for either temporary or permanent anchoring into substrates such as concrete, brick, hollow brick or block. The Concrete Screw-Anchor is particularly well suited to close-to-edge or close-to-anchor fixing as it does not expand and burst the surrounding substrate.

ICC ESR-5217


Zinc Clear Carbon Steel

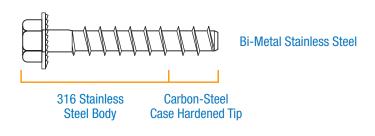
- Hot Dip Galvanized Carbon Steel
- Bi-Metal 316 Stainless with Case Hardened Tip

KEY BENEFITS

- Quick installation with a drill and drive method using a hex socket, ratchet or a torque controlled impact wrench.
- Unlike chemical anchoring or sleeved anchors, Concrete Screw-Anchors can be removed with ease leaving the hole clear of debris
- An increase in durability and reliability on installation of the Concrete Screw-Anchors, is a result of the dual-hardened body.
- The large self-tapping thread feature of this bolt is designed for fast advancing and high performance capacity as threads are formed in substrate material on installation.

PHYSICAL PROPERTIES

MATERIAL SPECIFICATIONS

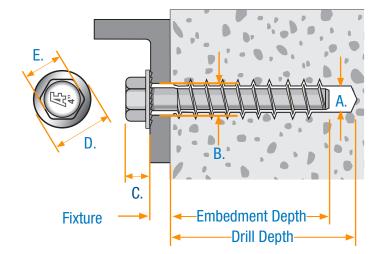

Concrete Screw-Anchors are a fast installation and immediate loading, completely removable anchor. The dual-hardened body and the large diameter self tapping screw by nature makes this anchor ideal for high load applications.

CARBON STEEL

The Carbon Steel Concrete Screw-Anchors material composition consists of 10B21 carbon steel. The anchor's tip is dual hardened for the purpose of threading into concrete.

BI-METAL

The Bi-Metal Concrete Screw-Anchors material composition provides superior corrosion resistance and lifespan when used in outdoor environments compared to other materials. The Bi-Metal anchor uses 316 stainless steel in the loading area combined with a case hardened carbon-steel tip for the purpose of threading into concrete.

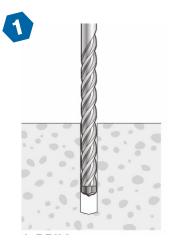


INSTALLATION SPECIFICATIONS

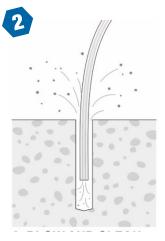
- A. Anchor/Drill Ø, inch.
- B. Clearance hole Ø in fixture, inch (major diameter).
- C. Flanged head height, inch.
- D. Washer Ø, inch.
- E. Wrench size, inch.

Table A1:

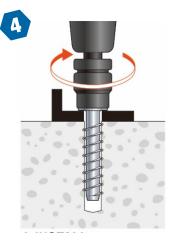
A.	В.	C.	D.	E.
1/4	3/8	9/32	9/16	7/16
3/8	1/2	3/8	3/4	9/16
1/2	5/8	1/2	1	3/4
5/8	3/4	9/16	1-1/8	15/16



CONCRETE SCREW ANCHORS


ZINC, GALVANIZED & STAINLESS STEEL

INSTALLATION GUIDE


1. Drill a hole into the base material to the required depth using a drill bit that meets the requirements of ANSI B212.15.

2. Remove Dust and debris from the hole using a hand pump or compressed air.

3. Select a powered impact wrench or torque wrench, attach an appropriate sized hex socket to the wrench and mount the screw anchor head into the socket.

 Drive the anchor through the fixture into the hole until the head of the anchor comes into contact with the fixture.

SETTING

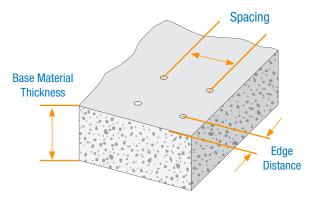
BASE MATERIAL THICKNESS

When setting an anchor, there is a recommended minimum thickness of the solid base material. The minimum is based on 1.5 times of the calculated embedment to be used. Eg. an anchor to be installed to a depth of 4", the base material should be 6" deep.

Embedment - a pre-determined depth to obtain the required load capacity. Equal to or greater than the minimum embedment allowance.

Drill Depth - is the required embedment depth into the substrate plus a cavity allowance approximately 1.5 times the anchor diameter.

SPACING


Anchor spacing should be determined by 10 times the selected anchor diameter to obtain the maximum load in tension or shear. This spacing can be reduced but the load value should also be reduced. The recommended minimum spacing is 5 times the selected anchor diameter, which will have a load rating reduced to 50%.

EDGE DISTANCE

Shall be determined by 10 times the selected anchor diameter to obtain the maximum load in tension or shear. The recommended minimum edge distance is 3 times the selected anchor diameter.

In tension – reducing the edge distance to the minimum, the load value will reduce by 30%.

In shear – reducing the edge distance to the minimum, the load value will reduce by 85%.

ZINC, GALVANIZED & STAINLESS STEEL

PERFORMANCE DATA

SAH-Z Screw Anchor With Hex Washer Head Installation Parameters¹

	0 m l t	1111							Nominal	Anchor D)iameter						
Characteristics	Symbol	Unit	1/	4"		3/8"			1/2"			5/	8"			3/4"	
Drill Bit Diameter	d _o	in (mm)	1/4	(6.4)		3/8 (9.5)			1/2 (12.7)			5/8 (15.9)			3/4 (19.1)	
Nominal Embedment Depth	h _{nom}	in (mm)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	3-1/4 (83)	2-1/4 (57)	3 (76)	4-1/4 (108)	3-1/4 (83)	4 (102)	5 (137)	5-1/2 (140)	4 (102)	5-1/2 (140)	6-1/4 (159)
Effective Embedment Depth	h _{ef}	in (mm)	1.24 (31.6)	2,01 (51.1)	1.21 (30.8)	1.98 (50.3)	2.62 (66.5)	1.66 (42.1)	2.30 (58.3)	3.37 (85.5)	2.54 (64.6)	3.19 (80.9)	3.99 (101.3)	4.42 (112.3)	3.14 (79.8)	4.41 (112.1)	5.05 (128.3)
Minimum Hole Depth	h _{hole}	in (mm)	2 (51)	2-7/8 (73)	2 (51)	2-7/8 (73)	3-5/8 (92)	2-5/8 (67)	3-3/8 (86)	4-5/8 (117)	3-5/8 (92)	4-1/2 (114)	5-3/8 (137)	6 (152)	4-1/2 (114)	6 (152)	6-3/4 (171)
Fixture Hole Diameter	d _r	in (mm)	3/8	(9.5)		1/2 (12.7)			5/8 (15.9)			3/4 (19.1)			7/8 (22.2)	
Maximum Installation Torque ²	T _{inst,max}	ft.lb (Nm)	21	(29)		N/A			N/A			N	/A			103 (140)	
Maximum Impact Wrench Torque Rating	T _{impact,max}	ft.lb (Nm)	135	(185)		135 (185)			260 (350)			260	(350)			440 (600)	
Minimum Concrete Thickness	h _{min}	in (mm)	3-5/8 (91)	4-1/2 (114)	3-5/8 (91)	4-1/2 (114)	5-1/4 (133)	4-1/4 (107)	5 (126)	6-1/4 (158)	5-1/4 (133)	6 (152)	7 (177)	7-1/2 (190)	6 (152)	7-1/2 (190)	8-1/4 (209)
Critical Edge Distance	C _{ac}	in (mm)								1.5 h _{er}							
Minimum Edge Distance (c _{min})	C _{min}	in (mm)								1-3/4 (44)							
Minimum Spacing (s _{min})	S _{min}	in (mm)								3 (76)							
Wrench Socket Size	-	in	7/	16		9/16			3/4			15	/16			1-1/8	

The tabulated data is to be used in conjunction with the design criteria given in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appedix D, as applicable. N/A - Manual torque wrench installation not evaluated. 1.

2.

ZINC, GALVANIZED & STAINLESS STEEL

PERFORMANCE DATA

SAH-Z Screw Anchor With Hex Washer Head Installation Parameters¹

01	Que la la	11.11							Nomina	Anchor D	Diameter						
Characteristics	Symbol	Unit	1/	4"		3/8"			1/2"			5/	8"			3/4"	
Nominal Embedment Depth	h _{nom}	in (mm)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	3-1/4 (83)	2-1/4 (57)	3 (76)	4-1/4 (108)	3-1/4 (83)	4 (102)	5 (137)	5-1/2 (140)	4 (102)	5-1/2 (140)	6-1/4 (159)
Effective Embedment Depth	h _{ef}	in (mm)	1.24 (31.6)	2,01 (51.1)	1.21 (30.8)	1.98 (50.3)	2.62 (66.5)	1.66 (42.1)	2.30 (58.3)	3.37 (85.5)	2.54 (64.6)	3.19 (80.9)	3.99 (101.3)	4.42 (112.3)	3.14 (79.8)	4.41 (112.1)	5.05 (128.3)
Anchor Category	1, 2 or 3	-	3	2	1	1	1	2	2	2	1	1	1	1	2	2	2
						Ste	el Strengt	h in Tensio	n & Shear								
Minimum Specified Ultimate Strength	f _{uta}	psi (N/mm²)	101,52	5 (700)	11	13,130 (78	0)	1	13,130 (78	0)		113,13	0 (780)		11	13,130 (78	0)
Minimum Specified Yield Strength	f _y	psi (N/mm²)	81,220) (560)	9	0,505 (624	4)	g	0,505 (624	ł)		90,505	5 (624)		9	0,505 (624	4)
Effective Stress Area (Screw Anchor Body)	A_{se}	in² (mm²)	0.0453	8 (29.2)	0.	.1020 (65.)	8)	0.	1827 (117.	9)		0.2888	(186.3)		0.	4145 (267	.4)
Steel Strength in Tension	N_{sa}	lb (kN)	4,585	(20.4)	1	1,535 (51.)	3)	2	0,680 (92.)	D)		32,665	(145.3)		46	6,895 (208	.6)
Strength Reduction Factor for Steel Failure in Tension	Φ_{sa}	-								0.65							
Steel Strength in Shear	V _{sa}	lb (kN)	1,350	(6.0)	3	8,150 (14.0))	6	6,745 (30.0)		10,115	5 (45.0)		1	5,060 (67.	0)
Steel Strength in Shear, Seismic	$V_{\rm sa,eq}$	lb (kN)	1,125	i (5.0)		1,800 (8.0))	3	3,730 (16.6)		6,880	(30.6)		1	3,240 (58.	9)
Strength Reduction Factor for Steel Failure in Shear	Ф _{sa}	-								0.60							
							Pullout Str	ength in Te	ension ³								
Pullout Strength in Uncracked Concrete	N _{p,uncr}	lb (kN)	N/A	4,025 (17.9)	1,395 (6.2)	2,990 (13.3)	N/A	N/A	4,115 (18.3)	7,485 (33.3)	N/A	6,585 (29.3)	8,320 (37.0)	N/A	N/A	N/A	N/A
Pullout Strength in Cracked Concrete	$N_{p,cr}$	lb (kN)	605 (2.7)	1,080 (4.8)	720 (3.2)	1,755 (7.8)	2,630 (11.7)	1,350 (6.0)	2,790 (12.4)	5,195 (23.1)	3,125 (13.9)	4,045 (18.0)	5,195 (23.1)	5,825 (25.9)	4,405 (19.6)	7,330 (32.6)	8,790 (39.1)
Pullout Strength in Cracked Concrete, Seismic	$N_{p,eq}$	lb (kN)	605 (2.7)	1,080 (4.8)	720 (3.2)	1,755 (7.8)	2,630 (11.7)	1,350 (6.0)	2,790 (12.4)	4,720 (21.0)	2,920 (13.0)	4,045 (18.0)	5,015 (22.3)	5,825 (25.9)	4,405 (19.6)	7,330 (32.6)	8,790 (39.1)
Normalization Exponent, Un- cracked Concrete	n	_	0.9	50		0.50			0.50			0.4	50			0.50	
Normalization Exponent, Cracked Concrete	n	-	0.4	40		0.50			0.50			0.4	40			0.50	
Strength Reduction Factor for Pullout Strength in Tension	Φ _p	-	0.45	0.55	0.65	0.65	0.65	0.55	0.55	0.55	0.65	0.65	0.65	0.65	0.55	0.55	0.55

Table Continues On Next Page...

ZINC, GALVANIZED & STAINLESS STEEL

PERFORMANCE DATA

SAH-Z Screw Anchor With Hex Washer Head Installation Parameters¹

									Nomina	I Anchor D	Diameter						
Characteristics	Symbol	Unit	1/	4"		3/8"			1/2"			5/	/8''			3/4"	
						Conci	rete Break	out Streng	th in Tensio	on							
Effective Embedment	h _{er}	in (mm)	1.24 (31.6)	2.01 (51.1)	1.21 (30.8)	1.98 (50.3)	2.62 (66.5)	1.66 (42.1)	2.30 (58.3)	3.37 (85.5)	2.54 (64.6)	3.19 (80.9)	3.99 (101.3)	4.42 (112.3)	3.14 (79.8)	4.41 (112.1)	5.05 (128.3)
Effectiveness Factor for Uncracked Concrete	k _{uncr}	in-lb (SI)	24 (10.0)	24 (10.0)	24 (10.0)	24 (10.0)	27 (11.3)	24 (10.0)	24 (10.0)								
Effectiveness Factor for Cracked Concrete	k _{cr}	in-lb (SI)	17 (7.1)	17 (7.1)	17 (7.1)	17 (7.1)	24 (10.0)	21 (8.8)	21 (8.8)								
Strength Reduction Factor for Concrete Breakout Strength in Tension	Φ_{cb}	-	0.45	0.55	0.65	0.65	0.65	0.55	0.55	0.55	0.65	0.65	0.65	0.65	0.55	0.55	0.55
Axial Stiffness in Service Load Range in Uncracked Concrete	β_{uncr}	lb/inch x 10⁵ (N/ mm)	2.719 (48)	1.928 (34)	6.240 (109)	4.502 (79)	3.670 (64)	8.809 (154)	7.079 (124)	5.649 (99)	10.377 (182)	9.099 (159)	8.080 (1411)	7.684 (135)	13.204 (231)	11.075 (194)	10.410 (182)
COV for β_{uncr}	۷	%								38							
Axial Stiffness in Service Load Range in Cracked Concrete	β_{cr}	lb/inch x 10⁵ (N/ mm)	1.451 (25)	1.100 (19)	3.318 (58)	2.563 (45)	2.179 (38)	4.887 (86)	4.120 (72)	3.487 (61)	6.134 (107)	5.568 (98)	5.117 (90)	4.941 (86.5)	8.063 (141)	7.119 (125)	6.825 (120)
COV for β_{cr}	٧	%								48							
						Conc	crete Breal	kout Streng	gth in Shea	r							
Nominal Diameter	d_0^2	in (mm)	0.250	0 (6.4)		0.375 (9.5)	(0.500 (12.7	7)		0.625	(15.9)		(0.750 (19.1)
Load Bearing Length of Anchor	I _e	in (mm)	1.24 (31.6)	2.01 (51.1)	1.21 (30.8)	1.98 (50.3)	2.62 (66.5)	1.66 (42.1)	2.30 (58.3)	3.37 (85.5)	2.54 (64.6)	3.19 (80.9)	3.99 (101.3)	4.42 (112.3)	3.14 (79.8)	4.41 (112.1)	5.05 (128.3)
Reduction Factor of Concrete Breakout Strength in Shear	Φ_{cb}	-								0.70							
						Cor	ncrete Pryc	out Strengt	h in Shear								
Coefficient for Pryout Strength	$k_{_{\rm cp}}$	-	1.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Reduction Factor for Pryout Strength in Shear	Φ_{cp}	-								0.70							

1. The tabulated data is to be used in conjunction with the design criteria given in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appedix D, as applicable.

The strength reduction factor applies when the load combination from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appedix C are used, the appropriate value of *f* must be determined in accordance with ACI 318-11 D.4.5.

ZINC, GALVANIZED & STAINLESS STEEL

PERFORMANCE DATA

Example SAH-Z Screw Anchor With Hex Washer Head Allowable Stress Design Values For Illustrative Purposes^{1,23,4,5,6,7,8,9,10}

Nominal Anchor Diameter	Nominal Embedment Depth	Allowable Tension Load
d _。 (inch)	h _{nom} (inch)	T _{allowable,ASD} (Ib)
1/4	1-5/8	504
1/4	2-1/2	1,271
3/8	1-5/8	613
3/8	2-1/2	1,313
3/8	3-1/4	2,235
1/2	2-1/4	954
1/2	3	1,529
1/2	4-1/4	2,759
5/8	3-1/4	2,133
5/8	4	2,892
5/8	5	3,654
5/8	5-1/2	4,897
3/4	4	2,791
3/4	5-1/2	4,130
3/4	6-1/2	5,061

1. Single anchor

2. Single tension loading only

З. Concrete determined to remain uncracked for the life of the anchorage.

Load combinations taken from ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable with no seismic loading. 4.

30% Dead Load (D) and 70% Live Load (L), controlling load combination 1.2 D +1.6L. 5.

6. Calculation of the weighted average of $a = 1.2 \times 0.3 + 1.6 \times 0.7 = 1.48$

7. Nominal weight concrete, f'_=2,500 psi.

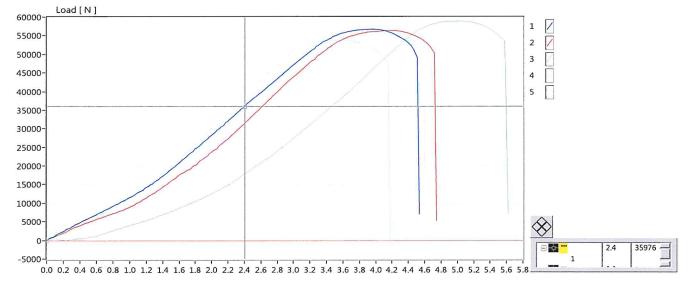
c_{a1} = c_{a2} ≥ c_a
Concrete thickness h ≥ h_{min}
Values are for Condition B (supplementary reinforcement in accordance with ACI 318 (-19 or -14) 17.3.3 or ACI 318-11 D.4.3 is not provided)

CONCRETE SCREW ANCHORS

ZINC, GALVANIZED & STAINLESS STEEL

TENSILE TEST REPORT

- 1. Date: 01/21/2020
- 2. Time: 10:41:47


// 5

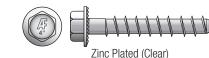
- 3. Temperature: 25°F
- 4. Speed: Single Speed V1 = 15.00mm/min
- 5. Test Style: Tension
- 6. Standard: CNS
- 7. Specimen: 3/8 x 5"

- 8. Spec. Length: 50.00mm
- 9. Spec. Area: 63.9003mm²
- 10. Spec. Diameter: 9.02mm
- 11. Total Energy: 111.621J
- 12. Young's Modu.: 15151.159N/mm²

Elon. [mm]

13. Jaw-Jaw: 610.00mm

	Peak Load	Peak Elon.	Peak Stress	Peak Strain	Break Load	Break Elon.	Break Stress	Break Strain	Yield Ys Load	Yield Ys Elon.	Yield Ys Stress	Yield Ys Strain
File Name	N	mm	N/mm²	%	N	mm	N/mm²	%	N	mm	N/mm²	%
1.21.tst	56,784	3.96	888.605	7.915	51,313	4.46	802.983	8.930	52,473	3.30	821.142	6.604
2.22.tst	56,405	4.17	882.667	8.340	51,906	4.67	812.267	9.350	53,526	3.55	837.626	7.091
3.23.tst	58,982	5.02	922.997	10.045	53,722	5.58	840.686	11.155	57,460	4.61	899.185	9.211
4.24.tst	53,856	3.55	842.784	7.105	48,995	4.11	766.718	8.215	51,235	3.01	801.763	6.013
5.25.tst	56,748	4.08	888.035	8.160	51,824	4.54	810.978	9.070	55,607	3.69	870.179	7.380
Average	56,555	4.16	885.018	8.313	51,552	4.67	806.726	9.344	54,060	3.63	845.979	7.260
Standard Devi.	1630.097	0.482	25.509	0.963	1516.731	0.490	23.735	0.980	2224.362	0.540	34.809	1.080
РМК (Са)	113107.845	6.313	1768.035	14.626	103101.821	7.344	1611.453	16.688	108118.485	5.260	1689.958	12.520
DPK (Cp)	0	0.346	0.007	0.173	0	0.340	0.007	0.170	0	0.309	0.005	0.154
CV%	2.882	11.590	2.882	11.590	2.942	10.487	2.942	10.487	4.115	14.876	4.115	14.876



CONCRETE SCREW ANCHORS ZINC, GALVANIZED & STAINLESS STEEL

ORDERING INFORMATION

CONCRETE SCREW ANCHOR - HEX FLANGE HEAD

Part #	Anchor* x Length (in)	Min. Embedment(in)	Max Fixture Thickness (in)	Clearance Hole Ø (in)	Wrench Size (in)
1SAHZ14134	1/4 x 1-3/4	1	3/4	3/8	7/16
1SAHZ14214	1/4 x 2-1/4	1	1-1/4	3/8	7/16
1SAHZ38212	3/8 x 2-1/2	1-1/2	1	1/2	9/16
1SAHZ38300	3/8 x 3	1-1/2	1-3/8	1/2	9/16
1SAHZ38400	3/8 x 4	1-1/2	2-3/8	1/2	9/16
1SAHZ12300	1/2 x 3	2	1	5/8	3/4
1SAHZ12400	1/2 x 4	2	2	5/8	3/4
1SAHZ12500	1/2 x 5	2	3	5/8	3/4
1SAHZ12600	1/2 x 6	2	4	5/8	3/4
1SAHZ58400	5/8 x 4	2-1/2	1-1/2	3/4	15/16
1SAHZ58600	5/8 x 6	2-1/2	3-1/2	3/4	15/16

*Drill Diameter

ORDERING INFORMATION

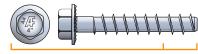
CONCRETE SCREW ANCHOR - HEX FLANGE HEAD

Part #	Anchor* x Length (in)	Min. Embedment(in)	Max Fixture Thickness (in)	Clearance Hole Ø (in)	Wrench Size (in)
1SAHG14134	1/4 x 1-3/4	1	3/4	3/8	7/16
1SAHG14214	1/4 x 2-1/4	1	1-1/4	3/8	7/16
1SAHG38212	3/8 x 2-1/2	1-1/2	1	1/2	9/16
1SAHG38300	3/8 x 3	1-1/2	1-3/8	1/2	9/16
1SAHG38400	3/8 x 4	1-1/2	2-3/8	1/2	9/16
1SAHG12300	1/2 x 3	2	1	5/8	3/4
1SAHG12400	1/2 x 4	2	2	5/8	3/4
1SAHG12500	1/2 x 5	2	3	5/8	3/4
1SAHG12600	1/2 x 6	2	4	5/8	3/4
1SAHG58400	5/8 x 4	2-1/2	1-1/2	3/4	15/16
1SAHG58600	5/8 x 6	2-1/2	3-1/2	3/4	15/16

*Drill Diameter

www.allfasteners.com | Customer Service 888.859.6060

GALVANIZED


ZINC, GALVANIZED & STAINLESS STEEL

HEX FLANGE HEAD, BUTTON TORX HEAD ANND FLAT TORX HEAD

ORDERING INFORMATION

STAINLESS STEEL - 316

316 Stainless Steel + Case Hardened Tip

Max Fixture **Clearance Hole** Stainless Part # Size mm (in) **Head Type** ANSI Drill SIze Wrench Size (in) Thickness (in) Ø (in) 1SAHS06060 M6 x 60mm (1/4 x 2-1/4) Hex Head 5/8 8.5 10 6mm Hex Head 1SAHS06080 M6 x 80mm (1/4 x 3) 6mm 1 - 3/88.5 10 1SAHS08075 M8 x 75mm (5/16 x 3) Hex Head 8mm 7/8 10 13 1SAHS08100 M8 x 100mm (5/16 x 4) Hex Head 8mm 1 - 3/410 13 1SAHS10085 M10 x 85mm (3/8 x 3-1/4) Hex Head 5/8 17 10mm 13 1SAHS10120 M10 x 120mm (3/8 x 4-3/4) Hex Head 10mm 2 13 17 1SAHS12150 M12 x 150mm (1/2 x 6) Hex Head 12mm 2 - 3/415 19 M6 x 60mm (1/4 x 2-1/4) **Button Torx Head** 8.5 10 1SABS06060 6mm 5/8 1SABS06080 M6 x 80mm (1/4 x 3) **Button Torx Head** 1-3/8 8.5 10 6mm 1SABS08075 M8 x 75mm (5/16 x 3) **Button Torx Head** 8mm 7/8 10 13 1SABS08100 M8 x 100mm (5/16 x 4) **Button Torx Head** 8mm 1 - 3/410 13 1SACS06060 M6 x 60mm (1/4 x 2-1/4) Flat Torx Head 5/8 8.5 10 6mm 1SACS06080 M6 x 80mm (1/4 x 3) Flat Torx Head 1 - 3/88.5 6mm 10 1SACS08075 M8 x 75mm (5/16 x 3) Flat Torx Head 8mm 7/8 10 13 M8 x 100mm (5/16 x 4) Flat Torx Head 1 - 3/41SACS08100 8mm 10 13

*Drill Diameter

RECOMMENDED INSTALL TOOLS

Bosch® 18V High Torque Impact Wrench with Pin Detent with (2) FatPack Batteries (4.0Ah)

Bosch Power Tools deliver stronger performance and lasting reliability. The Bosch HTH181-01 high torque impact wrench offers a heavy duty all-metal motor, impact hammer and anvil system, made to hold up in tough environments. It comes with (2) FatPack Lithium-Ion advanced technology batteries that combines Electronic Cell Protection, a unique battery pack design and customized electronics to deliver optimal battery life and performance. Bosch 18V Batteries equipped with Coolpack Technology. This will provide better performance from your tools in extreme heats and frigid temperatures.

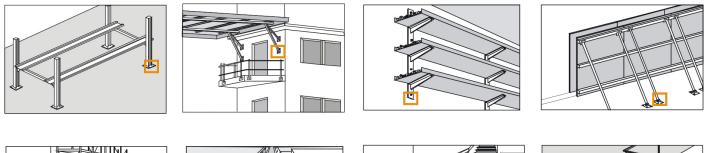
Part # Type 9HTH181-01 Pin Detent

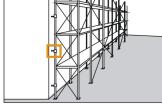
RECOMMENDED SOCKETS

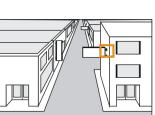
Bosch® 1/2-Square Drive Socket - Impact Ready

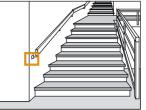
Impact tough deep well socket engineered for high torque. Forged steel reduces breakage. Absorbs torque peaks to reduce stress. Hardened core increases socket strength, reduces fractures. Engineered to meet ISO standards.

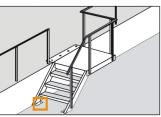
Part #	Socket Size
5BS27273	3/8
5BS27274	7/16
5BS27275	1/2
5BS27276	9/16
5BS27279	5/8
5BS27280	11/16
5BS27281	3/4
5BS27282	13/16
5BS27283	7/8
5BS27284	15/16


TRADE APPLICATION


	CARPENTER	CONSTRUCTION	RACKING INSTALLER	CONCRETE FORMWORKER
Bottom plates	\checkmark			
Awnings		✓		
Pallet racking			\checkmark	
Formwork support				\checkmark
Flooring	✓			
Shelving			\checkmark	
Bracing	\checkmark		\checkmark	
Railings / Balustrade / Safety Barrie	rs	\checkmark		\checkmark
Machinery			\checkmark	
Curtain Wall		\checkmark		






TRADE APPLICATION CONTINUED

